1. Consider a particle which moves randomly on the vertices of a triangle: Whenever the particle is at vertex \(i \), it moves to its clockwise neighbor vertex with probability \(p_i \) and to the counterclockwise neighbor with probability \(q_i = 1 - p_i, \ i = 1, 2, 3 \).

 (a) Find the proportion of time that the particle spends at each of the vertices.

 (b) How often does the particle make a clockwise move that is then followed by one consecutive counterclockwise move?

2. Consider a \(M/M/1/c \) queue, i.e., Poisson arrivals at rate \(\lambda \), iid exponential service times with parameter \(\mu \), 1 server, and the buffer size \(c \).

 a) Find the steady-state probability distribution of the number of customers in the system.

 b) Calculate the mean number of customers in the system.

 c) Calculate the mean delay experienced by customers. Note: customers who arrive and find the buffer full will not be considered in the mean delay calculation.

3. Consider a \(M/M/m \) queue, i.e., Poisson arrivals at rate \(\lambda \), iid exponential service times with parameter \(\mu \), \(m \) servers where each server can serve at most one customer, and the infinite buffer size.

 a) Find the steady-state probability distribution of the number of customers in the system. What is the stability condition (for existence of steady-state distribution)?

 b) What is the probability that a customer arrives and has to wait in line to get service?

 c) What will happen to the answers of parts (a) and (b) if \(m \to \infty \). (This is called a \(M/M/\infty \) queue)