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Definition 1 (Stochastic Process). A stochastic process is sequence of random variables
(Xt : t ∈ T ), where Xt takes on values in a set S. In many applications, the index set T is
a set of times, and S is the set of possible states for the system. The index set T could be
discrete-time (consecutive integers), or continuous-time (real numbers).

Any set of instances of (X(t); t ∈ T ) can be regarded as a path of a particle moving randomly
in the state space S, its position at time t being X(t). These paths are called sample paths
of the stochastic process.

1 Counting Process and Poisson Process

Definition 2 (Counting Process). A stochastic process is a counting process if its sample
path is piecewise constant and increases by one at discrete instances in time (called count
times or arrival times). Thus the process is described by a set of count (arrival) times {ti},
or equivalently by the set of intercount (inter-arrival) times u1 = t1, · · · , ui = ti − ti−1, · · · .
Hence, the number of arrivals before time t, N(t), is

N(t) =
∑
i

1(ti ≤ t),

where 1(·) is the indicator function.

Definition 3 (Poisson Process). Consider a counting process N(t) with N(0) = 0. If
intercount times ui, i = 1, 2, · · · , are iid exponentially distributed with parameter λ, then
N(t) is called a Poisson process with rate λ.



It follows that this definition of Poisson process is equivalent to the following two definitions.

Definition 4 (Poisson Process). A counting process N(t) is called a Poisson process with
rate λ if for any t, s > 0,
(i)N(0) = 0,
(ii)N(t+ s)−N(t) is independent of N(t) (independent increments property),
(ii)N(t+ s)−N(t) has a Poisson distribution with parameter λs, i.e.,

P {N(t+ s)−N(t) = k} =
(λs)ke−λs

k!
, k = 0, 1, 2, · · ·

Another equivalent definition is the following.

Definition 5 (Poisson Process). A counting process N(t) is called a Poisson process with
rate λ if

1. N(0) = 0.

2. P {N(t+ δ)−N(t) = 1} = λδ + o(δ),

3. P {N(t+ δ)−N(t) > 1} = o(δ).

Note that o(·) means that o(δ)
δ
→ 0 as δ → 0 (for example δ2 = o(δ)). Hence in any small

enough interval of length δ, there is either a count with probability λδ, or no counts with
probability 1− λδ (only these two events have non-negligible probability).

1.1 Properties of Poisson Process

Memoryless property

Assume we have waited for some time ‘s’ after ti, what is the probability that we have to
wait for an additional ‘t’ time units before seeing the (i+ 1)-th count?

P {ti+1 > ti + s+ t|ti+1 > ti + s} =
P {(ti+1 > ti + s+ t) ∩ (ti+1 > ti + s)}

P {ti+1 > ti + s}
=
e−λ(t+s)

e−λs
= e−λt

i.e., the waiting time is still exponential independent of s.

Merging

Let N1(t) and N2(t) be two independent Poisson processes with rates λ1 and λ2. Then the
process N1(t) +N2(t) is Poisson with rate λ1 + λ2.

Clearly this can be extended to more than two processes.



Splitting

Suppose N(t) is a Poisson process with rate λ. Create two new process N1(t) and N2(t) by
assigning each count event to the first process with probability p and to the second one with
probability 1 − p. Then N1(t) and N2(t) are independent Poisson processed with rates λp
and λ(1− p) respectively.

Clearly this can be extended to slitting into more than two processes.

2 Markov processes

Markov Processes naturally arise in the modeling of many systems where there is a notion of
state for the system at each time. The state at time t contains all the relevant information
about the system up to and including time t that is relevant to the future of the system.
For example, the state of an aircraft at time t could consist of the position, velocity, and
remaining fuel at time t. Think of t as the present time. Given the state at time t, the future
part of the aircraft trajectory is determined, independently of the history up to time t, i.e,
it does not matter how the aircraft has reached the current state at time t.

Definition 6 (Markov Process). A process X(t) is a Markov process if it has the memoryless
property: Given the value of X(t) at some time t ∈ T , the future path X(s) for s > t does
not depend on knowledge of the past history X(u) for u < t, i.e. for t1 < · · · < tn < tn+1,

P {X(tn+1) = xn+1|X(tn) = xn; · · · ;X(t1) = x1} = P {X(tn+1) = xn+1|X(tn) = xn}

The Markov processes that we will be considering in the course will have the following
properties.



Definition 7 (Irreducibility). X(t) is irreducible if all states in S can be reached from all
other states, by following the transitions of the process. If we draw a directed graph of the
state space with a node for each state and an arc for each event, or transition, then for any
pair of nodes there is a path connecting them, i.e. the graph is strongly connected.

Definition 8 (Time-homogeneity). X(t) is time homogeneous if behavior of the system does
not depend on when it is observed. In particular, the transition probabilities between states
are independent of the time at which the transitions occur. Thus, for all s and u,

P {X(s+ t1) = y|X(s) = x} = P {X(u+ t1) = y|X(u) = x} .

In this course, our primary objective with respect to a Markovian models will be to calculate
the probability distribution of the random variable X(t) over the state space S, as the time
goes to infinity. The long run behavior of the system usually approaches a regular pattern
called “the steady-state probability distribution”. From this probability distribution we will
derive performance measures based on subsets of states where some condition holds.

2.1 Discrete-Time Markov Chains

The Markov process X(t) takes on values in a countable set S, for t = 0, 1, 2, · · · . For sim-
plicity, Assume that the elements of S are indexed by integer numbers. Associated with each
Markov chain there is a probability transition matrix P , where Pij = P {X(t+ 1) = j|X(t) = i},
i, j ∈ S. For brevity we denote the pmf of X(t) as π(t) = (πi(t) : i ∈ S), where
πi(t) = P {X(t) = i}. Therefore the evolution of the pmf is given by

π(t+ 1) = π(t)P

Q: Is there exists a π such that π(t)→ π, starting from any initial condition π(0)?

If so, π is called the steady-state distribution. Note that π has to be one of the solutions
(equilibrium probability vectors) of the fixed point equation π = πP . Equivalently, this
matrix form can be written as∑

j 6=i

πjPji =
∑
j 6=i

πiPij ∀i ∈ S (flux into i = flux out of i)

These equations are called global balance equations. We further need to impose that∑
i

πi = 1

πi ≥ 0;∀i ∈ S.

Definition 9 (Periodicity). A state i has period k if any return to state i occurs in multiples
of k time steps. Formally, the period of a state is defined as

k = gcd{t : P {X(t) = i|X(0) = i} > 0},

where “gcd” is the greatest common divisor. For example, assume it is possible to return to
the state i at times {6, 8, 10, 12, ...}, then k = 2, even though 2 does not appear in this list.



If k = 1, then the state is said to be aperiodic: returns to state i can occur at all the times
large enough. Formally, a state i is aperiodic if there exists t0 such that for all t ≥ t0,

P {X(t) = i|X(0) = i} > 0.

A Markov chain is aperiodic if every state is aperiodic. All the states of an irreducible
Markov chain have the same period. Hence, an irreducible Markov chain only needs one
aperiodic state to imply all states are aperiodic.

Example 1 (irreducible but not aperiodic). Consider the state diagram of the following
Markov chain

P =

 0 1 0
0 0 1
1 0 0



First note that the markov chain is obviously irreducible. Solving the equation π = πP , we
see there is a unique equilibrium probability vector π = (1/3, 1/3, 1/3). On the other hand,
if π(0) = (1, 0, 0), then

π(t) = π(0)P t =


(1, 0, 0) if t ≡ 0 mod 3
(0, 1, 0) if t ≡ mod 3
(0, 0, 1) if t ≡ 2 mod 3

Therefore, π(t) does not converge as t → ∞. This example shows a periodic Markov chain
(with period 3).

For a state i, let τi = min{t : X(t) = i}, by the convention that the minimum of an empty
set of numbers is +∞. Let Mi = E [τi|X(0) = i]. If P {τi < +∞|X(0) = i} < 1, state i is
called transient (and by convention, Mi = +∞). Otherwise P {τi < +∞|X(0) = i} = 1, and
i is said to be positive recurrent if Mi < +∞ and to be null recurrent if Mi = +∞.



Theorem 1. Suppose X(t) is irreducible and aperiodic. Then

(a) All states are transient, or all are positive recurrent, or all are null recurrent.

(b) For any initial distribution π(0), limt→∞ πi(t) = 1/Mi, with the understanding that the
limit is zero if Mi = +∞.

(c) There exists a unique equilibrium probability distribution π such that π = Pπ and
limt→∞ πi(t) = πi, if and only if all states are positive recurrent.

Example 2 (calculation of equilibrium (steady sate /stationary) distribution). The Markov
chain is irreducible and aperiodic.

πa(1/2) = πc(1)

πb(1/2) = πa(1/4)

πc(1) = πa(1/4) + πb(1/2)

πa + πb + πc = 1

It has a unique stationary solution πa = 1/2, πb = πc = 1/4.

In general, it might be difficult to solve the global balance equations when S is a large space.
Instead, one can first try a solution that satisfy the following set of equations called detailed
balance equations:

πiPij = πjPji ∀i, j ∈ S∑
i∈S

πi = 1

It is easy to see that if the system of detailed balance equations has a solution, it would
satisfy the global balance equations. If the chain is irreducible and aperiodic, then we know
that this is the only possible solution. A Markov chain that satisfies the detailed balance
equations is called reversible.



Example 3 (Model of wireless link, Srikant-Ying’s book). Here is a simple model of wireless
link in discrete time.

Suppose at each time slot either one packet can be transmitted over the wireless channel
or zero packets (due to wireless fading). Let s(t) denote the number of packets transmitted
over the channel and suppose that s(t)’s are iid Bernoulli with mean µ. Suppose packets
arrive to the link according to a Bernoulli process with mean λ, i.e., a(t) is Bernoulli with
mean λ. There is a buffer (queue) at the link to contain packets waiting for transmission.
Let q(t) be the number of packets in the queue at the beginning of time t, then

q(t+ 1) = (q(t) + a(t)− s(t))+

where (x)+ := max{0, x}. The above equation assumes that first arrivals happen, then
possible departures. A transition from q(t) = i to q(t + 1) = i + 1 occurs when there is an
arrival but no departures. Hence Pi,i+1 = λ(1 − µ) =: α. Similarly, Pi,i−1 = µ(1 − λ) =: β.
Otherwise, q(t) remains unchanged.

We try the detailed balance equations

πiα = πi+1β ∀i

thus

πi = (α/β)iπ0

Since we need
∑

i πi = 1, we obtain

∞∑
i=0

(α/β)iπ0 = 1

If λ < µ, then α < β, and π0 = 1− α
β
. If λ ≥ µ, then there is no π that solves the detailed

balance equations. In fact, one can see that there is no equilibrium distribution in this case.
Thus the Markov chain is not positive recurrent (it is unstable) if λ ≥ µ.

The Markov chain here is called a Geo/Geo/1 queue (1 server, inter-arrival and service times
are geometrically distributed)

2.2 Foster-Lyapunov Stability Criterion

Markov Chains can be very complex and therefore it is useful to determine the stability
(positive recurrence) without solving the set of equations. The Foster-Lyapunov method
provides such a tool to determine the stability and at the same time can be used to derive
approximations or bounds on key performance parameters.



Theorem 2 (Foster-Lyapunov). Consider an irreducible discrete-time Markov process X on
a countable state space S. Suppose there exists a function V : S → R+ and a finite set
B ⊆ S such that

E [V (X(t+ 1))− V (X(t))|X(t) = x] ≤ −ε; ∀x ∈ Bc, for some ε > 0, and

E [V (X(t+ 1))− V (X(t))|X(t) = x] ≤ A; ∀x ∈ B, for some A <∞.

Then the Markov chain X(t) is positive recurrent.

2.3 Continuous-Time Markov Chains

For a continuous-time Markov Chain, transition from the current state to another state oc-
curs after some (continuous) holding time at the current state. In general, these holding
times represent the time duration that processing is occurring in the system, and the tran-
sitions represent events in the system. Assume the Markov chain enters a state i ∈ S at
time t, then the next state transition occurs at time t + Ti, where Ti is the holding time in
state i. For the Markov property to hold, at any point of time, the distribution of the time
until the next change of state, must be independent of the age of the system in the current
state. This means that holding times are memoryless. Since the only probability distribution
function which has this property is the exponential distribution, P {Ti > x} ≤ e−qix where qi
is the parameter (rate) of the holding time in state i. Hence at time s, the probability that
there is a state transition in the interval (s, s + δ) is qiδ + o(δ); otherwise, with probability
1− qiδ + o(δ), no transition occurs.

Now assume that when a transition from state i occurs, the new state is j with probability
pij. Therefore, for i 6= j,

P {X(t+ δ) = j|X(t) = i} = qipijδ + o(δ)

We define qij = qipij. Hence qij can be thought of the transition rate from i to j,and the
average time for a transition from i to j is exponentially distributed with parameter qij.
Note that from these definitions qi =

∑
j 6=i qij, hence to describe the sequence of events

(state transitions) we only need qij’s.

Thus the results of discrete-time Markov chains can be extended to the continuous-time case
by discretizing the time by multiples of δ. For example, the global balance equations to find
the equilibrium distribution is given by∑

j 6=i

πiqijδ + o(δ) =
∑
j 6=i

πjqjiδ + o(δ),

dividing both sides by δ and noting that o(δ)/δ → 0 as δ → 0, yields∑
j 6=i

πiqij =
∑
j 6=i

πjqji

Definition 10 (Generator Matrix of continuous-time Markov chain). The generator matrix
is defined as a matrix Q, where Qij = qij and Qii = −qi.



Then the global balanced equations is equivalently given by πQ = 0. Since we are looking
for solutions that are probability vectors, we also need

∑
i πi = 1.

Note that the continuous-time chain is always aperiodic (by construction of discretized ver-
sion), thus we only need incredibility.

Theorem 3. Suppose X is irreducible. Then

(a) All states are transient, or all are positive recurrent, or all are null recurrent.

(b) An equilibrium probability distribution π (a probability vector π that solves πQ = 0)
exists if and only if all states are positive recurrent, and further π is unique.

Similar to the discrete-time case, a reversible continuous-time Markov chain is the one that
satisfies the detailed balance equations

πiqij = πjqji ∀i 6= j

It is easy to see that the solution to the detailed balance equations also satisfies the global
balance equations.

2.4 Continuous-Time Queueing Systems

In general, we use Kendall’s notation

A/S/n/c

for a queueing system, where

• A stands for the description of the arrival process, (e.g., M stands for Markovian
interarrivals, GI for general (any distribution) independent arrivals, etc).

• S stands for the service time distribution, (e.g., M stands for Markovian service, G for
general (any distribution) service, etc).

• n stands for the number of servers in the system and can be any integer equal or larger
than 1.

• c stands for the maximum number of jobs that can be queued in the system (c ≥ 0).
If this argument is missing, then, by default, the buffer size is infinity.

M/M/1 Queue

The simplest and the easiest queueing system to analyze is the M/M/1 queue. Here the
first M stands for Markov arrival (iid exponentially distributed inter-arrival times with rate
λ), the second M stands for Markov service (customers need iid exponentially distributed
service time with rate µ), and 1 means that there is one server.



The dynamics of the queue is given by a continuous-time Markov chain.

Global balance equations are given by the following. For state i = 0,

λπ0 = µπ1,

for the state i = 1
(λ+ µ)π1 = λπ0 + µπ2

therefore
λπ1 = µπ2,

Proceeding similarly we obtain
λπi = µπi+1,

Therefore
πi = π0(λ/µ)i

Let λ/µ = ρ be the load on the system (utilization). If we impose
∑

i πi = 1, then πi =
(1− ρ)ρi, i ≥ 0, if ρ < 1 (stability requirement).

Average queue size:

E [Q] =
∞∑
i=0

iπi

=
∞∑
i=0

(1− ρ)iρi

= ρ(1− ρ)
∞∑
i=1

iρi−1

= ρ(1− ρ)
d

dρ
(
∞∑
i=1

ρi)

= ρ(1− ρ)
d

dρ
(

1

1− ρ
)

= ρ(1− ρ)(
1

(1− ρ)2
)

=
ρ

1− ρ



Average delay : we use Little’s Law

E [D] = E [Q] /λ =
1

µ− λ

Assume we scale the server rate and arrival rate by a factor of n. Then the load remains the
same. Thus E [Q] remains unchanged but E [D] = 1

n
1

µ−λ which reduces by a factor of n.

PASTA: Poisson Arrivals See Time Averages

Consider the M/M/1 queue in stationary regime then we know that at any time t is
P {Q(t) = k} = πk which is the average fraction of time that the Queue contains k cus-
tomers. Now suppose we are interested in the behavior of the system from the point of view
of the customers that arrive. Assume a customer arrives just after time t, i.e,, it arrives in
an interval (t, t+ δ) for some δ small enough. Then

P {Q(t) = k|A(t, t+ δ) = 1} =
P {Q(t) = k,A(t, t+ δ) = 1}

P {A(t, t+ δ) = 1}

=
P {Q(t) = k}P {A(t, t+ δ) = 1}

P {A(t, t+ δ) = 1}
= P {Q(t) = k} = πk

where we have used the fact that the arrivals after time t are independent of the queue size
at time t (independent increment property of Poisson process). Notice that the same type
of argument holds for any other queueing system in stationary regime. The discrete-time
counterpart of PASA is called BASTA (Bernoulli Arrivals See Time Averages).

Example 4 (PASTA is not true for general arrival processes). Consider a queue where
two customers arrive back-to-back in every 2T time units (thus arrivals are correlated not
Poisson). Assume each customer needs 1 unit of service. Then E [D] = 1

2
(1) + 1

2
(2) = 3

2
.

Arrival rate is λ = 2/(2T ) = 1/T . By Little’s Law, E [Q] = λE [D] = 3
2T

which goes to 0 as
T →∞. However, the average queue size seen by the arrivals is 1

2
(0) + 1

2
(1) = 1

2
.

M/M/m/m Queue

Arrivals occur according to a Poisson process with rate λ. There are m servers, each working
at unit rate. Each arriving customer is assigned to a free server if available, otherwise it is
dropped. Each customer requires exponentially distributed service time with parameter µ.
Thus the queue size Q(t) is the number of busy servers. S = {0, 1, , · · · ,m}. Note that the a
transition from state i to i− 1 occurs whenever any of the i busy servers finishes its service.
Therefore the transition rate from i to i− 1 is iµ. Checking the detailed balance equations,
the stationary distribution is given by

πk =

ρk

k!∑m
i=0

ρi

i!

; k ∈ S



The probability that all the servers are busy is therefore πm =
ρm

m!∑m
i=0

ρi

i!

. The blocking proba-

bility is the probability that a customer does not find a free server upon arrival. By PASTA,
this is equal to πm. This expression for πm is called the Erlang-B formula.

M/G/1 Queue and Pollaczek-Khinchine formula

In the previous examples, we considered queueing system with Poisson arrivals and expo-
nentially distributed service times. Poisson arrivals are in many cases a relatively accurate
model for the arrival process, but exponential service times are not very common in prac-
tice, in fact in many applications service times are simply some pre-determined constant.
Pollaczek-Khinchine formula extends the theory to the case of generally distributed service
times.

In M/G/1 queue, the arrivals are per a Poisson process of rate λ. Service times X1, X2, · · ·
are independent and identically distributed according to a “general” (G) distribution, where
Xi is the service time of the i-th arrival. Let E [X] = 1

µ
be the average service time and

E [X2] be the second moment of service time distribution. Let ρ = λ
µ

be the effective load

(utilization) of the system, with ρ < 1. Then the Pollaczek-Khinchine (PK) formula states
that

E [W ] =
λE [X2]

2(1− ρ)

where E [W ] is the average waiting time of a customer before it starts getting service.

If we want to model the system by a Markov process, then the state of the system at each
time t is a pair (N(t), A(t)) where N(t) is the number of customers in the queue and A(t) is
the service time already received by the customer in service. Note that if the service times
are exponential then the state is simply N(t) because the residual time (the remaining service
time of the customer in service) is independent of A(t) by the memoryless property. However
for general service time distributions this is not true. The analysis of the Markov process
(N(t), A(t)) to find the stationary probability is not simple because A(t) takes values in R.
Here we use a mean value approach to derive the PK formula for the average quantities.

Consider an arbitrary arrival to the queue in the stationary regime. Let the random variable
QA denote the number of customers in the queue (excluding the one in service) seen by the



arrival. Then the waiting time of the new arrival to get service is

WA =

QA∑
i=1

Xi +RA,

where RA is the residual service time seen by the arrival. By this we mean the remaining
time until the end of the service of the customer which is already in service when the new
customer arrives. Taking expectations,

E [WA] = E

[
QA∑
i=1

Xi

]
+ E [RA]

= E

[
E

[
QA∑
i=1

Xi|QA

]]
+ E [RA]

= E [QAE [X]] + E [RA] (because service times are independent of Qi)

= E [QA]
1

µ
+ E [RA]

By PASTA, in the stationary regime, the average quantities seen at the arrivals are identical
to the time average quantities. Hence, assuming that the time average quantities exist,

E [W ] = E [Q]
1

µ
+ E [R] ,

where the expectations above can be understood in terms of time averages. By the Little’s
Law E [Q] = λE [W ], hence

E [W ] =
E [R]

1− ρ

Next, we calculate E [R] through a graphical argument. Let R(t) denote the residual service
time at time t. Then note that when a customer i starts its service, its residual time is Xi

and then decays linearly with Xi time units.



Hence over a time interval [0, T ]

1

T

∫ T

0

R(t)dt ≈ 1

2T

M(T )∑
i=1

X2
i

=
1

2

M(T )

T

1

M(T )

M(T )∑
i=1

X2
i

where M(T ) is the number of service completions within [O, T ]. Taking the limit from both
sides, as T → ∞, and again assuming that the time averages can be replaced by statistical
averages, we have

E [R] = lim
T→∞

1

T

∫ T

0

R(t) =
1

2
λE
[
X2
]

This concludes the proof of the PK formula.


	Counting Process and Poisson Process
	Properties of Poisson Process

	Markov processes
	Discrete-Time Markov Chains
	Foster-Lyapunov Stability Criterion
	Continuous-Time Markov Chains
	Continuous-Time Queueing Systems


